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Abstract

Maintaining the long-term performance of software onboard a spacecraft can be a major factor in

the cost of operations. In particular, the task of controlling and maintaining a future mission of

distributed spacecraft will undoubtedly pose a great challenge, since the complexity" of multiple

spacecraft flying in formation grows rapidly as the number of spacecraft in the tbrmation
increases. Eventually, new approaches will be required in developing viable control systems that

can handle the complexity of the data and that are flexible, reliable and efficient. In this paper we

propose a methodology that aims to maintain the accuracy of flight software, while reducing the

computational complexity of software tuning tasks. The proposed Monitoring and Self-Tuning

(MAST) method consists of two parts: a flight software monitoring algorithm and a tuning
algorithm. The dependency on the software being monitored is mostly contained in the

monitoring process, while the tuning process is a generic algorithm independent of the detailed
knowledge on the software. This architecture will enable MAST to be applicable to different
onboard software controlling various dynamics of the spacecraft, such as attitude self-calibration,

and formation control. An advantage of MAST over conventional techniques such as filter or

batch least square is that the tuning algorithm uses machine learning approach to handle
uncertainty in the problem domain, resulting in reducing over all computational complexity. The

underlying concept of this technique is a reinforcement learning scheme based on cumulative

probability generated by the historical performance of the system. The success of MAST will
depend heavily on the reinforcement scheme used in the tuning algorithm, which guarantees the

tuning solutions exist.

1. Introduction

Some of the problems encountered during the development of a control system are the uncertainty,

in the application domain and the balancing between efficiency and complexity" of the system. In

a large and complex problem such as distributed spacecraft, the accuracy of the control software
system depends on how much in_brmation about the problem can be modeled into the system.
The more information taken into account, the more complex the system becomes, leading to

higher computational cost. Moreover, the task of maintaining long-term performance of the
control software onboard spacecraft can be a major lector in the operation cost of future multiple

spacecraft missions.

In the control of distributed spacecraft flying in tbrmation, conventional control algorithms are

very complex due to large number of variables and the interaction among individual control

systems in the formation. This makes tbrmation maintenance and control of future constellations



or distributedspacecraftagreatchallenge,sincethecomplexityof a spacecraftformationgrows
non-linearlyasthenumberof spacecraftin the formation.New approachesarerequiredthat
resultin vi_ablccontrolsystemsthatcanhandlethecomplexity,of thedataandthatareflexible,
reliableandefficient.

In thispaperwcproposetheMonitoringandSelt-Tuning(MAST)algorithmthataimsto reduce
thecomplexity'of onboardsottwareby dealingappropriatelywith uncertainty.MASTusesan
approachbasedonthereinforcementlearningschemethatcanbeappliedtovariousdynamicsof
spacecraftsuchasonboardattitudeself-calibration,or formationkeeping.Thistypeof machine
learningapproachhasamuchwideroperationalrangethantheconventionalbatchleastsquareor
filter techniques.This is simplybecause;thelearningsystemcanbedesignedto automatically'
accumulateandreuseits pastactivities,whichwill enablethe systemto reactand adaptto
changesin the environment.Thisapproachis thereforeappropriatefor problemswith large
degreeof uncertainties.Moreover,this techniqueis not critically dependenton the detailed
"knowledgeof thesoftwarebeingtuned.As aresult,someof thetechnicalrestrictionsgenerally
requiredinconventionaltechniquessuchaslinearity,orconditionsonprocessandmeasurement
noisesarenotrequiredif a learningalgorithmisbeingused.

MASTis anextensionof aprojectatNASA/GoddardSpaceFlightCenter(GSFC):Autonomous
Model-basedTrendAnalysisSystem(AMTAS)[1]. Theobjectiveof AMTAS is to monitorthe
healthand safetyof spacecrafthardwareand subsystems.MAST extendsthis objectiveto
dynamicapplicationsby proposingto applytechniquesdevelopedin AMTASto onboardflight
software,which controlthe dynamicsof spacecraft. In general,the performanceof flight
softwarecanbemeaningfullydefinedasameasureof theclosenessbetweentheobservedandthe
predictedstateof thesystems.Thesequantitiesareusuallyreferredtoasresiduals.Understanding
theuncertaintyunderlyingtheresiduals,identifyingits controllingfactors,andquantifyingthe
propagationof thesefactorsthroughthemodelfor thesystemcanleadto animprovementin the
performanceof thesoftware.

MASTalgorithmconsistsof twomainparts:apredictor and a tuner. The predictor is a real-time
dynamic system that performs the monitoring task, coupling with the software it is monitoring,

taking as input the states of the software at regular time intervals. The step size of the sampling
time varies depending on the parameters being monitored. The state of the predictor represents

the performance of the software. When the software performance is found to approach a given
limit, the tuner will be activated. The tuner is a closed-loop learning algorithm guided by a
reinforcement scheme, which is generated by an uncertainty handler. The goal of the tuning

process is to minimize a cost fimction. During each cycle the values of the model parameters
being tuned are increased or decreased, depending on the outcome of the previous few cycles.
With the adjusted parameters, the software performance is recalculated and the next cycle begins.

The rate of convergence of the tuning process depends on the reinforcement scheme used to score
how successful the adjusted parameters are towards the tuning goal. If the reinforcement scheme

is completely impartial, then the learning algorithm is simply a random search. On the other
extreme, a reinforcement scheme that always scores perfectly is equivalent to the conventional

gradient (steepest descent) method. It should be noted that the tuner is an off-line algorithm
running in parallel and isolated from the routine operation of the flight software. Not untilthe

tuning goal has been reached, that the software will be updated with the new values for the model

parameters. Hence, the tuner may be performed on the ground or on an onboard computer.

In this paper we will discuss two possible applications of MAST: the attitude monitoring and sell-
calibration (ASCAL), previously proposed in [2] and an application of MAST to tbrmation

control. In the first application, the accuracy of attitude software shall depend on, among other

things, how accurate its sensor models are. Sensor models are generally a function with

parameters representing relevant uncertainties such as bias, scale factor or misalignment. In the



beginning,theseparametersaresetat certainpre-calibratedvaluesandaremanuallytunedand
updatedperiodicallythroughoutthe life of thespacecraft.Sometuningprocessesareroutine
activities,whileothersareelaboratedandperformedon groundby attitudespecialists.Inthis
proposedapplication,MASTwill automaticallymonitorandtuneasetof sensorparameters.For
furtherreadingsonstandardattitudecalibrationprocedures,seefor instance[3-6].

In thesecondexample,we proposeanapplicationof MAST to the maintenanceof a future
missionof largeformation.Thetaskof controllinganumberof spacecraftto fly in formationis
morecomplicatedthancontrollingasinglespacecraft.Oneproblemthatmaybeencounteredin
thedevelopmentof formationcontrolalgorithmsfor largeformationis thecomplexity.'thatarises
from the high degreeof freedomof the system. In practice,the conventionalstate-space
representationapproachis manageableonly for formationof a smallnumber(2-3)of spacecraft.
The complexitybecomesvery high in a largeformation,which makesthe controlalgorithm
computationallyintensive.Moreover,uncertaintiesin thesystemmodelsor fromenvironmental
disturbancescanbepropagatedandmagnified.To correcttheseerrorsthecontrolsystemhasto
betunedoftenandregularly.Hence,thetaskof keepingtheformationintactrequirescontinuous
monitoringandadjustingthepositionof eachindividualspacecraft.Henceit is moredesirableto
performthis taskonboard,andhence,efficientandfastalgorithmsfor thereal-timesolutionof
suchalarge-scaleoptimizationproblemareneeded.

Theorganizationof this paperis as follows. Section2 describesthe architectureof MAST
includingthe interfacebetweenonboardsoftware,the predictor,and the tuner. Section3
describestheformulationof themonitoringmodeincludingthepredictorandits interfacewith
inputsoftwarebeingmonitored.Section4 describesthetuningmode. Section5 describesthe
formulationof the learningsystemandits reinforcementscheme.Section6 discussesthetwo
examples:ASCALandaformationmaintenancemethodologyusingMAST.

2. MAST Architecture

There are two different modes in MAST: The monitoring mode and the tuning mode. The

monitoring mode consists of the control software being monitored and the predictor, both running

in real time. Figure 1 demonstrates the connection between the predictor and the software. The

predictor is the part of MAST that is dependent on the software being monitored. It is necessary
that, in order to monitor and diagnose the problem accurately, the predictor must understand the

nature of the software it is interacting with. A model for the predictor is described in the next
section.

The tuning mode consists of three components connected in a closed-loop: an oft-line copy of the
software being monitored, the evaluator, and the tuner. Their interface is demonstrated in Figure
2. The evaluator measures the convergence of the tuning solutions and the tuner makes appropriate

adjustment to certain model parameters of the software guided by a reinforcement learning

scheme. In general, the reinforcement learning scheme can be generated by various uncertainty'

handling technique. In blAST, the scheme is based on the Local Dempster-Shafer theory (LDS)
which is a modification of the Dempster-Shafer theory of belief and evidence [7,8]. LDS was

originally developed for AMTAS diagnosis process [1,9]. It is specifically developed for

problems with a large number of variables. As opposed to the predictor, the evaluator and the
tuner are generic processes that do not require in-depth knowledge of the software being tuned.

Their basic requirements are a set of software parameters to be tuned and an appropriate cost
function that measures the inaccuracies of the software. The evaluator evaluates and scores the

result of each cycle by monitoring the effect of the parameter adjustment on the cost function.
Based on this score, the tuner continues to adjust the parameters until the process converges.
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3. Monitoring mode

This mode is performed during normal operation. Let x denotes the state vector estimated by the

software and s denotes the vector of sensor parameters being monitored and calibrated. Assume

that an expected state vector x a is given, x. may be obtained in various ways depending on the

software and on sensors and parameters being monitored. Let the software be driven by the

dynamic system

._t) : f(x(t)) + u(t) (1)

z k = G(s,, x(Q )) + w(Q )

where Zr. _ is the measurement for sensor r at time t k , and s r is the parameter vector associated

with the model of measurement r. The process noise u and measurement noise w is assumed to be

uncorrelated white Gaussian with zero mean. During the monitoring mode (normal operation) the

parameter vectors s, are constant.

The performance of (1) is observable from the deviation of certain quantities, such as state

residuals x-%, or sensor residuals, z,. k -G(s,x (t_)). Let _ represents the vector of the

desired residual observations. The monitoring process is then defined via a tracking process, i.e.

the linear dynamic of _ and its slope _,&.

((t:,..,) : .::(Z,.) + &t-.,._t ,_) + ? >.-"v(t,.. )

_tx. , ) = _._t x ) + At. v(t x )

where v is a zero mean white Gaussian acceleration noise. The time step At =tx. _ -t x for

residual samplings may be larger than the time step of the input system ( 1 ). Let ._:= [,-" _df,. Then

the state-space representation of the predictor can be written as



._(t_.., ) = ,-1..{'(t_ ) + V •v(t,., )

: :H..qt_)+y_-K

(2)

i- l At ] ,.h

where ,-1=10 1_'" F=[At:/._ At], H=[I 0].

Note that, the measurement 5 x. represents the residual sampling while the state ._(t_. ) measures

the level of performance of (1) during the time t x . A propagation of .f(t_. ) predicts if and when

the performance of (1) approaches an acceptable threshold. System (1) and the predictor (2)
connect as shown in Figure 1. Higher order derivatives of the state residual can be included in

._(t_.) in a similar way. In which case, we would have a higher order predictor. Higher order

derivative may be crucial for software systems that are sensitive to uncertainties in measurement

models, which is generally the case for a highly non-linear, chaotic or unstable systems.

4. Tuning Mode

The tuning process is a closed-loop algorithm composed of the software to be tuned, e.g. the

dynamic estimator (1), an evaluator that evaluates the outcome of the tuner during each cycle, and
a tuner, which is a learning system that adjusts model parameters based on the evaluation. The

evaluator takes as input the estimated states of (1) and a nominal state given by a model. The
evaluation is based on the effect of the tuner on a cost function, typically written as

= .C •M..i

where M is a symmetric positive definite quadratic form that provides the weight and relations

among the residuals. This weight reflects the importance and sensitivity of each state variable in

the tuning process.

Remark: For the tuning process to be fully independent of the application software there should

be a preprocessor that properly initializes the tuner when it is activated. The preprocessor
identifies and initializes the parameters, step size, and parameter ranges. For instance, the

parameter ranges are chosen in such a way that the region is void of any singularity and at least
one solution exists. This knowledge can be given a priori by human experts in terms of rules or a

belief measure on the set of parameters, their ranges, and step sizes. Moreover, with proper

learning capability, these values can be based on the past experiences of the tuner. For instance,
these measure functions can be updated each time the system completes a tuning task, whether it

is successful or not. This preprocessor is highly dependent of application domain and will not be

discussed in this paper.

5. Reinforcement Learning System

Reinforcement learning is the type of learning that is popular among most current researches in

machine learning and statistical pattern recognition. Other popular type of learning systems such
as artificial neural network, requires _tpriori training from examples provided by an experienced

supervisor. Such systems are not quite appropriate for problems involving learning from
interaction. In interactive problems it is often impractical to obtain examples of desired behavior
ahead of time, which are both correct and representative of all the situations to which the system
has to react. In an unknown situation, where learning is most beneficial, the system must be able

to learn proactively from its own experience.



Duringthe tuningprocess,theparameteradjustmentis basedon therateof convergence(or
divergence)of theresidualsduringtheprevioustwo(or more)cycles.Assumetherearensensor
parametersto beadjusted,andeachparametercanbeincreasedor decreasedbya fixedquantity.

H=. \1)_02ilia) possible ways of adjustment. Each choice isaset of_FI]iS corresponds to

i-

parameters with a + or - sign to denote if the parameter is being increased or decreased. For
instance, an increase in parameter a and a decrease in parameter b is represented by the "signed"

set {a.,b_ }. During each loop K, the set H of all possible choices is indexed by a cumulative

probability distribution p_. which is computed using the Local Dempster-Shat'er (LDS) theory.

The learning process in the tuner is precisely the mechanism that adapts Px to obtain the new

index px+_ for the next cycle.

Due to space limitation, we will describe a simpler algorithm based on the Dempster-Shafer (DS)

theory, which we modified to suit our tuning problem. For a more in-depth discussion of the
LDS theory see [2]. DS theory is defined on a set of n elements. Recall that, H is a set of all

possible ways of modifying model parameters being tuned. A mass function onH is a probability
function that assigns a degree of belief to each of its element. The mass function satisfies the

following conditions

Zm(A) = 1, forA;eQ and re(Q) = 0
A__tf

Two mass functions m I and tn_ on H can be combined into a single mass function ml ® m_, by

the Dempster composition rule:

m_ ®m2(A ) = Zml(B)m2(C)/(1- Zm_(B)m,.(C)) , for A_@
B_C=A BwC=Q

m_ ® m__(®) = O.

These mass functions are used to generate the degree of belief associated to each element ofH. A

belief function generated by a mass function m is defined as:

p:H --* [0,11; b(A) = __, re(B)
B__A

where the union between two signed sets is obtained by "adding" all elements in the two sets

according to their sign. This way, every subset of the form {a, a_ } will all be cancelled out. In

statistical terms, the belief function is a cumulative probability on H.

During each tuning cycle, the belief function is evaluated and used to index the set H. If the

resulting residuals are tbund to decrease with a faster rate or increase with a lower rate, the tuner

will re-compute the next belief vector Px-: by applying a positive learning algorithm described in

[l,9]. The new index will strengthen the performance in the previous cycle. Conversely, if the
residuals peribrmed in the opposite manner, then the negative learning algorithm will be applied.

resulting in lessen the degree of belief on the failed action.

The learning process discussed above is the simplest application of the (modified) DS theory to

the tuner. In practice this algorithm can be enhanced in various ways to increase the performance
and robustness of the tuner. First. the localization of the DS theory onH defined in [l,9] will

reduce the size of search space. Second, the size of parameter increment may be decreased as the

residuals begin to converge. Third, the use of hierarchical or multilevel learning systems



acceleratesthe learningprocess(more so for the initial rate of learning) and simplifies the

structure of tile tuner in each layer.

Remark: In some situation, the dynamics driven the sotiware may have a hierarchy structure. A

typical example: in a formation with complex topology, it may be more convenient to partition
the system into layers of homogeneous sub-fornmtion. In which case, the control algorithm will

have to be partitioned accordingly. Hence, the set H will also be required to have a hierarchical

structure to support the hierarchy of the control software. A hierarchical version of DS theory
can be defined in a natural way, and the parameter tuning is performed in a sequence of steps.

First, the highest level in the set H is selected, following by a lower level. This procedure
continues until the last level is reached. This hierarchical structure will reduce the size of the

search space in each layer, and hence enhance the performance of the tuning system. The third

component in the tuning mode is the evaluator. Its important task is to diagnose the problems that

predictor predicted. This corresponds to determining, based on the residual data alone, which

parameters in the software need adjustment, and what are the "safe" ranges that these parameters
may vary. Such information must be determined prior to the tuning process. Usually, expert

knowledge can be encoded in some form, such as rules.

6. Example 1: ASCAL

During an attitude sensor calibration, where both states and modelparameters are simultaneously
solved for, it is natural to consider extended state vectors consisting of both attitude and sensor

parameters. However, including sensor parameters as part of the state will introduce additional
non-linearity into the system, making it more complex and too costly to run onboard. An

alternative approach is to apply MAST to adjust these parameters incrementally. During each

cycle, sensor parameters are adjusted and attitude and sensor residuals are computed. Using
different combination of sensors and gyroscope, two or more attitudes are estimated. The

predictor monitors and predicts the values of the residuals using conventional prediction
algorithms such as the dynamic predictor given in Section 3, or standard regression and

extrapolation. When it is discovered that the residuals will exceed a given threshold sometime in
the future, implied by an inconsistency in the estimated attitudes, the tuning mode will be

activated. In the tuning mode, the evaluator will diagnose the inconsistencies and create one or

more calibration goals, usually expressed as "which measurement parameters are needed to adjust
the ranges for the appropriate calibration algorithm". The tuning process is then planned and

scheduled. In a spacecraft where one or more sensors need regular calibration, or where computing

resource is stringent, the predictor may be replaced by a fixed schedule or by a cron table.

The calibration process is an iterative process, where sensor parameters believed to be in error are
adapted on the basis of the system experience with a goal that the mean of all residuals converge
to zero. The calibration procedure depends on the types of sensors available onboard. If there are
sufficient number of redundant sensors, a standard technique is to compare the attitude
determined by the measurements from a set of sensors including the sensor to be calibrated with

those determined from a different set of sensors with at least equal or higher accuracy. On the

other hand, if there are no redundant sensors of high enough accuracy, then the procedure usually

involves more in-depth analysis. In this paper, we assume there is at least one accurate sensor

such as a CCD. Typically, CCD is chosen as the standard frame of reference and generally does
not need calibration. In this case, we may calibrate other sensors by comparing the resulting
estimated attitude and sensor residuals with that determined from the CCD. Any inconsistency

that occurs indicates that there are errors in one or more model parameters.

For current missions, the gyro scale lector calibration task has to be done manually and regularly

by attitude specialists. MAST can be applied to this problem it" there is sufficient planning



capabilityon board.The gyro scalet:actorparameteris calibratedby inspectingchangesin
attitudeduringa plannedmaneuvering,llaving anautonomousplannerandschcduleronboard
will enablethe systemto piggybackgyro scalefactorcalibrationduring routinespacecraft
maneuvering.

7. Example 2: Formation Keeping

Formation control architectures are being developed tbr various future missions and several

approaches are being investigated. One of the research efforts in this area at the Goddard Space
Flight Center is the tbrmation flying tbr the New Millennium Program [10, 11] designed tbr Earth
Orbitor 1 (EO-1) spacecraft flying in formation with the Earth Observing System-AaM1 (EOS-

AM1). The tbrmation of EO-1 and EOS-AMI involves position maintenance of the two

spacecraft relative to measured separation errors. This involves the use of an active control
scheme to maintain the relative positions of EO-1 (chaser) with respect to EOS-AM1 (target).

This formation structure is specifically designed for the EO-1/EOS-AM1 formation, which

involves only two spacecraft. With care, conventional control algorithms can be used effectively
in such a small formation. For a large formation, the complexity rises very rapidly and

eventually conventional algorithm will break down and new approach will be needed. GSFC and
Stanford have form a partnership to develop the Autonomous Control System (AutoCon)

architecture which employs innovative use of fuzzy logic and natural language to resolve multiple

conflicting constraints and autonomously plan, execute and calibrate routine spacecraft orbit
maneuvers. The underlying control algorithm is a robust autonomous closed-loop three-axis

system. However, it is still not clear if AutoCon will be feasible for the control of a large
formation. Our main objective in this application of MAST is to improve on our machine

learning approach to work with or integrate into AutoCon environment. See also [12] for another

approach to formation control.

Currently, there are two major approaches in spacecraft formation control and maintenance: the
slave and master architecture, and the decentralized formation architecture. In the slave and

master approach, one of the spacecraft, designated the center of the tbrmation, perlbrms all the
necessary computation to determine control requirements for itself and for the rest of its crew.

The master spacecraft has two-way communication with each of the slave spacecraft. In the
decentralized approach, all spacecraft in the formation are peers. They transmit necessary

attitude, position, velocity and control information among each other. A decentralization

algorithm with minimal exchanged information has been developed by R. Carpenter [13]. His

technique is based on the Linear-Quadratic Gaussian Control algorithm [14]. Another approach
to the control of a large formation is to use synchronization algorithm introduced by Pecora and

Carroll [ 15,16].

At the time this paper was written, none of the approaches to tbrmation flying "known to the
authors have been tully developed and tested. Nevertheless, we will discuss the possibility, of

applying MAST algorithm to formation control and maintenance problems. As opposed to the
attitude sensor calibration where sensor parameters are adjusted to achieve desired attitude

accuracy goal, in tbrmation maintenance application, the control vectors are adjusted to achieve

desired position (and attitude) of each spacecraft in the formation. In the decentralized tbrmation
control, each spacecraft in the formation pertbrms local closed-loop control using input from its
local sensors in addition to intbrmation transmitted from other spacecraft in the formation. In the

monitoring mode, relative position and attitude of each spacecraft is monitored against a
tbmmtion model. When sizable drifts are predicted, MAST tuning mode will be activated. An

example of this mode is demonstrated in Figure 3. In this mode, an extended Kalman filter is
used in the position estimation, while MAST tuning process is used to adjust control parameters.



Thetunerwill takeasinputpastmeasurementsof positionresidualsandattemptto adjustcontrol
parametersbasedon theresultsof previouscycles.Of course,MASTtuningprocessshouldbe
doneoffline(to savefuel). Notuntil thesystemhasaccumulatedsufficientinforrnationin terms
of cumulativeprobabilitydistribution),or thesolutionsarenearlyconverging,thenMASTmay
beswitchedtoareal-timetuningprocess.
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Figure 3. An example of using MAST in Formation

Maintenance Application

For future invesngation, extended Kalman filter in the position estimator will also be replaced by

or coupling with MAST's tuning algorithm in order to reduce the computational cost even further.

8. Conclusion

The proposed program MAST is designed with the following philosophy in mind: the
dependency on the application domain lies entirety in the predictor component, while the tuning

component is generic and independent of application domain. With this concept, new
applications can be developed quickly by focusing on developing a predictor with full knowledge
of the nature of the application domain enough to monitor and diagnose problems that may occur.

The tuning mode, on the other hand, will only need information on the cost function that needs to

be optimized, and parameters to be modified.

This study is part of our program to increase the level of autonomy ofonboard flight software. A

proof of concept of ASCAL, the first phase of the program is now being developed in
NIATLAB TM.
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